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Abstract. A machine vision system was developed and evaluated for the automation of online inspection 
to differentiate freshly slaughtered wholesome chickens from systemically diseased chickens. The system 
consisted of an electron-multiplying charge-coupled-device (EMCCD) camera used with an imaging 
spectrograph and controlled by a computer to obtain line-scan images quickly on a chicken processing line 
of a commercial poultry plant. The system scanned chicken carcasses on an eviscerating line operating at a 
speed of 140 chickens per minute. An algorithm was implemented in the system to automatically recognize 
individual carcasses entering and exiting the field of view, to locate the region of interest (ROI) of each 
chicken, to extract useful spectra from the ROI as inputs to the differentiation method, and to determine the 
condition for each carcass as being wholesome or systemically diseased. The system can acquire either 
hyperspectral or multispectral images without any cross-system calibration. The essential spectral features 
were selected from hyperspectral images of chicken samples. The differentiation of chickens on the 
processing line was then carried out using multispectral imaging. The high accuracy obtained from the 
evaluation results showed that the machine vision system can be applied successfully to automatic online 
inspection for chicken processing. 
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Introduction 
American chicken plants process over eight billion birds annually. Processing plants seeking to satisfy 

increasing consumer demand by increasing output through faster processing are limited by the current 
inspection system, which limits each human inspector to examining a maximum of 35 birds per minute 
(bpm) on the processing lines. The Food Safety and Inspection Service (FSIS) of the United States 
Department of Agriculture (USDA) has implemented the Hazard Analysis and Critical Control Point 
(HACCP) program in processing plants throughout the country and has also been testing the HACCP-based 
Inspection Models Project (HIMP) (USDA, 1996). This project includes a zero tolerance standard for 
chickens with infectious condition such as septicemia and toxemia, which must be removed from the 
processing line. Systemically diseased chickens show external symptoms of septicemia or toxemia. 
Septicemia is caused by the presence of pathogenic microorganisms or their toxins in the bloodstream, and 
toxemia is the result of toxins produced from cells at a localized infection or from the growth of 
microorganisms. 

For poultry plants to meet government food safety regulations while maintaining their competitiveness 
to satisfy consumer demand, the development of new inspection technologies, such as automated computer 
imaging inspection systems, should be considered (USDA, 2005). One possible solution to this challenge is 
for poultry processing plants to install online instrumental inspection systems that can accurately screen out 
unwholesome carcasses. Only questionable carcasses in the rejection line would then require “re-inspection” 
to ensure that wholesome carcasses are not discarded. This approach would dramatically reduce the number 
of birds requiring human inspection. An obvious benefit of automatic poultry inspection would be improved 
overall production efficiency of the processing plants. 

There have been several research studies using multispectral imaging systems for chicken carcass 
inspection (Windham et al., 2003; Yang et al., 2006). Multispectral images contain spectral and spatial 
information from the surface of chicken carcasses, which both studies identified as being essential for 
efficient identification of contamination and systemic disease. Many studies (Chao et al., 2007; Mehl et al., 
2002; Windham et al., 2003; Yang et al., 2006) have shown that the proper selection of wavelengths is 
essential for successful multispectral imaging applications. Once specific wavelengths and image features 



 

 

that can increase classification accuracy for chicken inspection have been determined using data from a 
hyperspectral imaging system, it is usually necessary to implement them into a separate multispectral 
imaging system in order to achieve fast imaging for online inspection applications. Furthermore, 
considerable effort is required to ensure that a multispectral imaging system with significantly different 
hardware and software components can obtain the same results as the hyperspectral imaging system. Thus, a 
major challenge is the difficulty of cross-system calibration for implementing configurations and features to 
a multispectral imaging system (Lawrence et al., 2003). 

More recent studies have used hyperspectral/multispectral line-scan imaging systems to overcome the 
challenges of cross-system calibration (Chao et al., 2007; Yang et al., 2006). Line-scan imaging systems 
were initially used for surface analysis studies. Images collected using hyperspectral line-scan imaging 
systems have been used for applications such as surface roughness measurement (Bjuggren et al., 1997), 
rapid acquisition of fluorescence lifetime imaging (Connelly et al., 2001), and prediction of nitrogen and 
phosphorus content in spring barley (Christensen et al., 2004). From these studies, hyperspectral line-scan 
imaging systems appear to be well suited for detecting differences in surface reflectance between 
wholesome and systemically diseased chickens. 

For online inspection of poultry carcasses, line-scan machine vision systems should, ideally, be able to 
easily implement the multispectral image features and processing algorithms determined through 
hyperspectral imaging analysis, with minimal software adaptations and without the need for cross-system 
calibration. Therefore, in this research, a hyperspectral/multispectral line-scan automatic machine vision 
system for differentiation of wholesome and systemically diseased chickens was successfully developed. 
The system acquired hyperspectral line-scan images to determine the key wavelengths, region of interest, 
and input features for chicken differentiation. When switched over to acquire multispectral line-scan images, 
the same system was able to automatically sense the coming and leaving of a chicken carcass, locate the 
region of interest, and differentiate systemically diseased chickens from wholesome ones. Hyperspectral and 
multispectral imaging conducted on a commercial chicken processing line was used for the development and 
evaluation of this system, to ensure that the system can function appropriately for the needs of the poultry 
industry. 

MATERIALS AND METHODS 
System development and online evaluation 

The machine vision system was developed and evaluated on a chicken eviscerating line at a Tyson 
Foods chicken processing plant (Cumming, GA, USA) in 2007. The line speed was 140 birds per minute. 
First, the system acquired sample images of 190 wholesome and seven systemically diseased chickens, for 
use in determining the region of interest, selecting the key wavebands, and obtaining the parameters for the 
differentiation algorithm. These images were acquired with the machine vision system in hyperspectral 
imaging mode, and the chicken conditions were determined by a USDA-FSIS veterinarian observing the 
birds on the processing line as they approached the machine vision system. Next, the system was switched 
to multispectral imaging mode, and online imaging was conducted to evaluate the differentiation algorithm 
and to determine the decision threshold, again based on the bird assessments by the veterinarian standing 
beside the system to observe the chickens on the processing line. Last, the system was run continuously in 
multispectral imaging mode for two eight-hour shifts and its differentiation results were compared with the 
wholesome and systemically diseased bird counts produced by from the processing plant’s inspectors who 
worked during those two shifts. 
Line-scan machine vision system 

The line-scan machine vision system consisted of an electron-multiplying charge-coupled-device 
(EMCCD) camera, an imaging spectrograph, an optical lens, two pairs of light-emitting-diode (LED) line 
lights, a controlling PC, and a power backup battery. Figure 1 showed the general scheme for the line-scan 
machine vision system. The instruments were assembled on a wheeled cart for convenient movement, easy 
access and operation, and flexible installment in the limited space of a poultry processing plant. The imaging 
part of the system, including the camera, the spectrograph, and the lens, was assembled to sit in the imaging 
platform. The cart was always positioned to provide for a distance of 914 mm between the shackle line and 
the lens. The lighting part of the system had two pairs of line lights, an outer pair and an inner pair. One 
outer light and one inner light were mounted together on a single pivot joint to the right of the field of view, 
and the remaining two lights were mounted similarly on another pivot joint to the left of the field of view, 
such that on each side, the angles of illumination of the inner light and outer light were not independently 
adjustable. The joints were separated by 115 mm, each at a distance of 254 mm from the shackle line. The 
outer pair was positioned slightly ahead the inner pair, rather than with their forward faces flush, which 
allowed for some forward movement of the target surface within 25 mm of the shackle line so that the 
convex surface of a bird pushed slightly more forward than normal would still be adequately and uniformly 



 

 

illuminated. Since each light was composed of a vertical series of LED heads, the inner pair was positioned 
a half head higher than the outer pair to prevent interference between the two pairs. The pivot joints were 
fixed on one end of the lighting beam, which was mounted on slide blocks under the imaging platform so 
that the lights could be easily positioned, by forward/backward adjustment, at the appropriate distance from 
the shackle line. Three posts were installed on the cart to support the imaging and lighting parts. Slide 
blocks on the support posts also allowed the elevation of the imaging platform to be easily adjusted to the 
appropriate height for imaging. Another post supported the weight of the lighting beam. An acrylic panel 
mounted on the support posts shielded the camera hardware from dripping water overhead; panels of 
construction-grade plastic sheeting shielded the camera and computer hardware from excess water spray and 
splash of chicken carcass fluids in the processing environment. The plastic panels were fastened to the cart 
frame and overhead acrylic panel using adhesive-backed Velcro, allowing researchers to access the 
instruments as needed during system operation. 

A PhotonMAX 512b EMCCD camera (Princeton Instruments, Roper Scientific, Inc., Trenton, NJ, 
USA), operating with a 10 MHz, 16-bit digitizer, was used to acquire images. Unlike a conventional CCD 
camera, the EMCCD camera can function with high multiplication gain to compensate for low illumination 
levels due to short exposure times. Thus, this camera was used for low-light, high-speed image 
visualization, which is essential for automatic online chicken inspection. While taking line-scan images, the 
camera was set for a 0.1 ms exposure time and an absolute multiplication gain of 45. An ImSpector V10 
imaging spectrograph (Spectral Imaging Ltd., Oulu, Finland) was used to produce spectral images from a 
linear field of view. A slit in front of the spectrograph collimates light for the pixels of the line-scan image 
being acquired, and the white light from each pixel is dispersed into contiguous wavelengths across the 
detector array by the spectrograph’s prism/grating/prism system. Thus, when acquiring a line-scan image 
from the linear field of view, the machine vision system could simultaneously acquire spectral data for each 
pixel in the line-scan image. A Rainbow S6X11 C-mount lens (Schneider Optics, Inc., Hauppauge NY, 
USA) was used because its optimal spectral range of 400-1000 nm encompassed the spectral wavebands 
essential to effective poultry wholesomeness inspection. Four LL6212-WHI line lights (Advanced 
Illumination, Inc., Rochester, VT, USA) were used for their high-power broad-spectrum illumination, long 
lifetime, and lower level heat production. The current for these lights was set at 100 mA for each of the four 
channels, blue, green, red, and infrared, to obtain white light. The program to control the machine vision 
system and execute the differentiation algorithm was developed and operated on a LabVIEW 8.2 (National 
Instruments, Austin, TX, USA) platform. 
Image acquisition 

Each hyperspectral line-scan image acquired by the camera consisted of 512 × 512 pixels. For the 512 
rows of pixels, the measurements contained within any single row comprised the reflectance value at one 
spectral waveband for the 512 spatial pixel coordinates of the line-scan image. For the 512 columns of 
pixels, the measurements contained within any one column comprised the 512-point reflectance spectrum 
for one spatial pixel coordinate of the line-scan image. To increase image acquisition speed, the size of the 
image was reduced by binning the spectral pixels by four (accumulating the intensities of every four pixels 
along the spectral dimension as one pixel measurement) to produce a hyperspectral line-scan image size of 
512 × 128 pixels. Because this process was carried out in the hardware of the camera, it reduced the number 
of pixels to be converted and digitized for the computer to process, thus increasing the imaging speed of the 
machine vision system. Empirically, it was found that the intensities from the first 19 and the last 54 spectral 
channels were too low to be useful, due to characteristics of the light source and lens. Discarding these 73 
channels, the remaining 55 spectral channels were retained for image acquisition. Thus, the final 
hyperspectral line-scan image size was set at 512 × 55 pixels. 

 The machine vision system in this study was capable of functioning in two imaging modes, 
hyperspectral imaging and multispectral imaging, and could be easily switched between the two. For 
conventional development of machine vision systems, specific spectral parameters would be determined 
first using a hyperspectral imaging system and then implemented in separate multispectral imaging system. 
The conversion and implementation of parameters from one system to the other usually involves time-
consuming cross-system calibration. The capacity of a single system to operate in either hyperspectral or 
multispectral imaging mode can eliminate the need for cross-system calibration and ensure accurate 
performance. In the hyperspectral imaging mode, the machine vision system in this study acquired a 55-
band spectrum for each of the 512 spatial pixels in every hyperspectral line-scan image, as described as 
above. For the multispectral imaging mode, specific individual wavebands were selected and only the 
reflectance measurements for these selected wavebands were digitized for the computer to process, while 
the rest were discarded by the hardware of the camera. Thus, there remained 512 pixels in the spatial 
dimension of the image but the pixels in the spectral dimension were further reduced from 55, enabling the 
system to operate even faster in multispectral imaging mode than was possible in hyperspectral imaging 



 

 

mode. For the development of this multispectral imaging system, hyperspectral image analysis was 
performed specifically to select specific wavebands to implement for the differentiation of wholesome and 
systemically diseased chickens by the same system operating in multispectral imaging mode. 

The ability of the machine vision system’s EMCCD camera to use a very short exposure time with a 
high gain setting and to select a limited number of pixels in the spectral dimension of the multispectral line-
scan images were vital to the system’s successful operation in multispectral imaging mode for 
differentiating wholesome and systemically diseased chickens. These factors enabled the system to 
effectively image birds on a high-speed processing line that operated at a speed of 140 carcasses per minute. 
System calibration and image correction 

Before any period of continuous poultry imaging (such as an 8-hour shift on a chicken processing line), 
the machine vision system must be calibrated in five steps to ensure accurate performance. In the first step, 
focusing the lens, a grid paper was presented as a focal target at a distance of 914 mm from the front of the 
lens, equal to the expected distance from the lens to the poultry carcass surface. The grid also served as a 
reference measure for adjusting the field of view, to translate a vertical length of 178 mm in the illuminated 
imaging area into the 512 spatial pixels. Translating 178 mm linear field of view into 512 spatial pixels, 
each pixel covered an area of 0.348 × 0.348 mm2. 

In the second step, optimizing the illumination, a white Spectralon 99% diffuse reflectance target 
(Labsphere, Inc., North Sutton, NH, USA) was presented at the 914 mm distance in front of the lens. The 
angles of the pivot joints (to which the line lights were mounted) were adjusted to obtain the maximized 
reflectance intensity of the line-scan images. The outer pair of line lights was positioned slightly ahead of 
the inner pair to overcome the challenge presented by the curved poultry surfaces and the expected variation 
in the surface presentation distance from the camera lens (within 25 mm of the 914 mm distance). 
Regardless of the convex surface of a bird, its surface would be adequately and uniformly illuminated for 
line-scan imaging. 

In the third step, aligning the spectrograph, a mercury-neon pencil light was used with the LED line 
lights turned off. The lamp of the pencil light contains mercury to dominate the output spectrum, and also 
contains neon as a starter gas. Thus, the spectral output of the pencil light in the first minute of usage is that 
of neon, and afterwards turns to that of mercury. The spectrograph must be physically aligned for uniform 
waveband dispersal across the spectral dimension for each spatial pixel. This alignment was ascertained by 
examining the spectral dispersal of the 55 wavebands for each of the 512 spatial pixels for a line-scan 
image: with proper alignment, the highest intensity value among all 55 wavebands will occur at the same 
spectral coordinate for each of the 512 spatial pixels. Within a single line-scan image, acquired using a 
neon-mercury calibration lamp to illuminate a white background, the specific spatial and spectral 
coordinates X and Y were found at (x,y) for the pixel with the highest intensity. Then, for the first spatial 
pixel in the line-scan image (i.e. all pixels for which spatial coordinate X = 1), the spectral intensity at 
spectral coordinates y - 1, y, and y + 1 were compared to determine if the intensity at y was greater than both 
the intensities at y - 1 and y + 1. Similarly, for the 512th spatial pixel in the line-scan image (i.e. all pixels 
for which spatial coordinate X = 512), the spectral intensity at spectral coordinates y - 1, y, and y + 1 were 
compared to determine if the intensity at y was greater than both the intensities at y - 1 and y + 1. The 
waveband alignment of the spectrograph was correct if y was found to correspond to the local spectral 
maxima for both the first pixel and the 512th pixels. 

In the fourth step, correlating the spectral channels to wavebands, the raw spectra for the mercury-neon 
pencil light were used again. There are six peaks of the spectra corresponding to known reference 
wavelengths: 436 nm and 546 nm from mercury light, and 614 nm, 640 nm, 703 nm, and 724 nm from neon 
light. These wavelengths were assigned to the wavebands corresponding to six apparent peaks (Figure 2). 
After obtaining a 55-waveband spectrum, the second-order polynomial regression, in which λ is the 
wavelength (nm) and scn is the spectral channel number, was calculated based on the six known wavelength 
peaks of the mercury and neon spectra (Figure 2), to calibrate the spectral dimension. Function 1 was 
obtained to correlate channels to wavebands as follows: 

 

 45.38264.600.0 2 +×+×= scnscnλ  (1) 
 
Function 1 showed an almost-linear relationship between spectral channels and wavebands in the range 

from 389 nm (the first channel) to 744 nm (the 55th channel), with an average bandwidth of 6.57 nm. The 
correlation coefficient of the linear regression between calibrated and expected wavelengths was 0.9999. 

In the fifth step, preparing flat-field correcting images, some line-scan images of a Spectralon diffuse 
reflectance target were acquired. They were averaged to obtain a white reference image, W. Then, the lens 
was completely covered and some dark current images were acquired and averaged to obtain a dark 



 

 

reference image, D. This step, of preparing white and dark reference images, was repeated whenever the 
machine vision system was switched from hyperspectral imaging mode to multispectral imaging mode, 
since the image size would be different. For each raw line-scan image I0, the pixel-based flat field correction 
was performed to obtain the corrected line-scan image I as follows: 
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−

= 0
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The relative intensity of the corrected image was used for image processing and classification afterward. 
After obtaining the corrected relatively intensity image, image segmentation was performed by masking 

to separate the poultry carcass from the image background. A black matte-surface acrylic panel hung behind 
the chickens on the processing line provided the background for imaging. Because the highest intensity 
differences between chicken carcass pixels and background pixels were empirically observed to occur at the 
620 nm waveband, the reflectance intensity at 620 nm was used for image segmentation to separate chicken 
from background. The pixels in which the relative intensity at 620 nm was lower than the threshold 0.1 
would be treated as black background and discarded. Pixels for which the relative intensity at 620 nm was 
lower than the threshold value of 0.1 were treated as background pixels and discarded – i.e. omitted from 
further processing for carcass differentiation. Only non-background pixels were used for carcass 
differentiation. The threshold value of 0.1 was determined by trial and error. 
Poultry carcass detection and region of interest location 

After the machine vision system was calibrated, online imaging of chicken carcasses was begun. For 
carcass differentiation, full wingtip-to-wingtip scanning of each bird was not necessary. Moreover, the 
wings of adjacent birds always overlapped each other on the processing line, so wingtip-to-wingtip line-scan 
imaging was rendered unfeasible without major modification of the processing line configuration. A method 
was developed to automatically detect the entry of each chicken carcass into, and its exit from, the camera’s 
field of view. As the camera acquired each new line-scan image, the relative reflectance at the 620 nm 
waveband was examined for each pixel within the upper part of the line-scan image, termed the ‘carcass 
detection length,’ which consisted of 200 pixels in this case. The initial entry of the carcass into the field of 
view was recognized when the relative reflectance at the 620 nm waveband increased over the threshold 
value of 0.1 for any single pixel within these uppermost 200 pixels, which corresponded to the entry of the 
leading edge of the leg of a carcass properly hung on a processing line shackle shackle. This method only 
examines the uppermost 200 pixels of each line-scan image in order to disregard possible anomalies in the 
position of the wings or any eviscerated organs as the carcass comes into view. After the detection of the 
first line-scan image containing an over-threshold pixel within the carcass detection length, subsequent line-
scans were monitored as the chicken continued to move across the field of view and additional pixels, 
located below the first detected over-threshold pixel and above the 200th pixel, began showing increased 
relative reflectance values at 620 nm. As the line-scans continued, the indices of pixels whose reflectance 
values had not yet crossed over the threshold value were noted until, ultimately, a line-scan was found that 
contained only one pixel (or several adjacent pixels) remaining below the first detected pixel and above the 
200th pixel for which the reflectance value was still below 0.1. When the reflectance value crossed the 
threshold value for that last pixel in the next line-scan image, then the location of that pixel P was identified 
as the point on the leading edge of the chicken image corresponding to the junction of the thigh and the side 
of the abdomen. The point P was designated as the start point (SP), and the line-scan image containing this 
point was the starting line (SL), for the individual carcass currently being scanned. 

After identifying the SL, subsequent line-scan images were acquired and the ending line (EL) was 
identified when the reflectance value at the pixel location corresponding to the SP crossed the threshold 
value from above to below, indicating that the main body of the bird had already passed through the field of 
view. The reflectance intensities at 620 nm from wing and thigh areas were lower than those from other 
areas because of shadows and irregular surfaces (Yang et al., 2006). Eliminating the wing and thigh areas 
from consideration would increase the differentiation accuracy that can be achieved. Thus, only the carcass 
surface scanned between SL and EL and below SP would be considered further to locate the region of 
interest (ROI) for each carcass. Because the achievable differentiation accuracy could be increased by 
eliminating the wing and thigh areas from consideration, the potential region of interest (ROI) to be used for 
classifying each carcass was only evaluated using pixels located below the SP coordinate in the line-scan 
images between the SL and EL for each bird. 

The location of each potential ROI to be evaluated for use in differentiating carcasses was defined by the 
top boundary, TB, and the bottom boundary, BB, each of which specifies a percentage of the pixels within 
the line-scan image, as counted from the SP vertical coordinate down to the lowermost non-background 



 

 

pixel. For each scanned line between the SL and EL, the ROI consists only of pixels between TB and BB. 
Only the pixels in the ROI, from SL to EL and from TB to BB, were considered for poultry carcass 
differentiation (Figure 3). 
Key waveband selection and poultry carcass differentiation 

For each ROI considered, the spectral difference was calculated between the average spectrum of ROI 
pixels of wholesome birds and the average spectrum of ROI pixels of systemically diseased birds. The 
waveband for which the highest difference value occurred was selected as the key waveband WI. The 
average and standard deviation (std) values for relative reflectance of wholesome and systemically diseased 
ROI pixels at waveband WI, obtained for the same sample chicken images, were used for single-band 
intensity-based differentiation of chicken carcasses. 

For each ROI considered, the average spectrum of wholesome ROI pixels and the average spectrum of 
systemically diseased ROI pixels (calculated above) were examined to identify major peaks (local spectral 
maxima). The wavebands at which these peaks occurred were selected for consideration as the top 
waveband, WRT, for use in a two-waveband ratio for differentiating wholesome and systemically diseased 
chickens. Each of these peak wavebands was paired with a bottom waveband, WRB, corresponding to the 
nearest lower-waveband local spectral minimum. Ratio values were thus calculated as the WRT intensity 
divided by the WRB intensity for each waveband pair. The ratio values were calculated for all wholesome 
ROI pixels and all systemically diseased ROI pixels from the sample chicken images, and the average and 
standard deviation (std) of the ratio values were used for ratio-based differentiation of chicken carcasses. 

After the selected parameters for intensity and ratio differentiation were determined, a differentiation 
algorithm was developed. The algorithm contained two mapping functions, one defined for intensity 
differentiation and another for ratio differentiation. Each mapping function converted the input value, either 
a pixel’s intensity at waveband WI or the ratio of a pixel’s intensities at wavebands WRT and WRB, into an 
estimate of that pixel’s possibility of indicating the systemically diseased condition. For each mapping 
function, the output value was assigned to be one when the input value, was equal to or less than the average 
value for systemically diseased chickens. The output value was assigned to be zero when the input value 
was equal to or greater than the (average – std) value for wholesome chickens. For inputs between those 
values, the output value assignment decreased linearly from one to zero. A higher output value indicated a 
higher possibility for the image pixel to be an indicator of systemic disease. The primary reason for defining 
the mapping functions on the average systemically diseased values and the (average – std) wholesome 
values was that wholesome ROI pixels tended to have higher values with less pixel-to-pixel variation both 
for intensity at waveband WI and for the intensity ratio using WRT and WRB, compared to systemically 
diseased ROI pixels. It was observed that pixels could be correctly classified whenever the input values 
occurred within the range of 97.5% confidence for wholesome chickens or in the range of 50% confidence 
for systemically diseased chickens. 

After the SL was detected for an individual carcass, the mapping functions were applied to each ROI 
pixel in every line-scan image between the SL and EL, thus producing for each ROI pixel one output value 
for intensity-based differentiation and another for ratio-based differentiation. When the EL was detected, the 
outputs for all the ROI pixels were averaged to calculate the possibility of that carcass being systemically 
diseased. The average was compared against a decision threshold value that was calculated from applying 
the differentiation algorithm to the new images of wholesome and systemically diseased chickens acquired 
during multispectral online inspection. If a carcass’s average output was higher than or equal to the decision 
threshold, the carcass was identified as systemically diseased. 

RESULTS AND DISCUSSION 
Figure 4 shows the range of the differences of the spectral intensities between wholesome and 

systemically diseased chickens that occurred for the ROIs defined by various values of TB and BB, the top 
and bottom ROI boundaries, respectively. For each ROI, the spectral difference range includes the spectral 
difference value at each of the 55 wavebands for which the system acquired data when in hyperspectral 
imaging mode. The results showed that the maximum spectral difference between the average spectrum of 
wholesome ROI pixels and the average spectrum of systemically diseased ROI pixels occurred for one of 
the 55 wavebands when the ROI was defined by TB of 40% and BB of 60%. 

Figure 5 shows the average spectra for wholesome chicken pixels and systemically diseased pixels that 
were calculated for pixels in the 40%-60% ROI in the sample chicken images. Three local maxima were 
identified in these spectra, occurring at 455 nm, 534 nm, and 620 nm. Each of these wavebands was paired 
with the nearest lower-wavelength waveband at which a local spectral minimum occurred: the 455 nm, 534 
nm, and 620 nm peaks were thus paired with the 435 nm, 495 nm, and 580 nm valleys, respectively. The 
ratio of the reflectance intensities for each pair was evaluated for two-waveband ratio-based differentiation 
of wholesome and systemically diseased chickens. The value of the difference between average wholesome 
ratio and average systemically diseased ratio was calculated for each waveband pair and the results are 



 

 

shown in Table 1. The waveband pair of 580 nm and 620 nm produced the greatest difference between 
average ratio for wholesome ROI pixels and average ratio for systemically diseased ROI pixels, and thus 
were selected as the key wavebands WRB and WRT. 

The average spectrum of wholesome ROI pixels and the average spectrum of systemically diseased ROI 
pixels, shown in Figure 5, were used to calculate a difference spectrum that was analyzed for the selection of 
key waveband WI for single-band intensity-based differentiation. The spectral range between 567 nm and 
580 nm showed the greatest difference values between the average wholesome and average systemically 
diseased spectra. To simplify the differentiation algorithm, the 580 nm waveband was selected for WI since 
it was already selected for WRB for two-band ratio-based differentiation. This selection, along with the 
selection of the 620 nm waveband as WRT (same band used for image segmentation to remove the image 
background), provided the benefit of minimizing the number of different wavebands needed for conducting 
multispectral inspection, thus potentially helping to minimize data processing time and maximize operation 
speed for the system. With only two wavebands needed to conduct differentiate wholesome and 
systemically diseased chicken images, the size of the line-scan images produced by the inspection system in 
multispectral imaging mode was 512 spatial pixels x 2 spectral pixels. 

After selecting the key wavebands, the parameters for the mapping functions of the differentiation 
algorithm were determined by calculating the mean and standard deviation (std) values of the intensities at 
the 580 nm and of the ratio of intensities between 580 nm and 620 nm from the ROI of the sample images of 
wholesome chickens and the sample images of the systemically diseased chickens. Figure 6 shows the 
results. The mean values for systemically diseased chickens and the (average – std) values for wholesome 
chickens were used for the mapping functions. Applying the mapping function for intensity differentiation 
to each pixel in the ROI, the output value was equal to one when the input, the relative intensity at WI, was 
equal to or less than 0.243. The output value was equal to zero when the input was equal to or greater than 
0.290. For input values in between, the output assignment decreased linearly from one to zero. Applying the 
mapping function for ratio differentiation to each pixel in the ROI, the output value was equal to one when 
the input, the ratio of the relative intensities at WRB and WRT, was equal to or less than 0.904. The output 
value was equal to zero when the input was equal to or greater than 0.912. For input values in between, the 
output value decreased linearly from one to zero. Each pixel in the ROI for a chicken carcass produced one 
output from the mapping function for intensity differentiation and another output from the mapping function 
for ratio differentiation. When line scanning reached the EL of a carcass, all of the outputs from both 
mapping functions were averaged to calculate the possibility of this carcass being systemically diseased. 

After the algorithm was defined, the machine vision was run to inspect 63 systemically diseased 
chickens which were identified by a USDA-FSIS veterinarian online right before the location of the system. 
After the differentiation algorithm was defined, the machine vision system was run in multispectral imaging 
mode to inspect chickens for a period during which 63 systemically diseased chickens were identified on the 
processing line by a USDA-FSIS veterinarian observing the birds immediately before they entered the 
image system’s field of view. The final decision output for each of these 63 birds was always higher than 
0.6 and thus the decision threshold value was assigned: any carcass for which the final decision output was 
higher than or equal to 0.65 would be identified by the system as systemically diseased. Then, the machine 
vision system was run continuously in multispectral imaging mode for two eight-hour shifts to inspect 
chicken carcasses on the processing line. The results of the system were compared to the bird counts 
produced by processing plant’s inspectors during the same shift. It was noted that the machine vision system 
was installed after the beginning of the shift due to logistical issues; consequently, the number of chickens 
inspected by the machine vision system was lower than that inspected by the human inspectors. It was 
reasonably assumed that the systemically diseased chickens existed randomly in a normal distribution 
among all the processed chicken carcasses. Therefore, the rate of systemically diseased chickens over all 
carcasses inspected by the machine vision system could be compared to the one by the inspectors. 

Figure 7 shows the results for online carcass inspection from the machine vision system in the first shift. 
During this shift, 45456 poultry carcasses were inspected by the machine vision system. The machine vision 
system identified 177, or 0.39%, of the carcasses as systemically diseased chickens. During the same shift, 
the inspectors identified 84, or 0.16%, of the chickens as systemically diseased, among the 53563 chickens 
in total that they inspected. The machine vision system identified more systemically diseased chickens than 
the inspectors. The primary reason for high misclassification of systemically diseased chickens may have 
been the intense steam from the high moisture environment clouding the lens, which would have reduced 
the overall reflectance from the carcasses that was detectable by the system. When the machine vision 
system was used for the imaging of individual carcasses with the assistance of the USDA-FSIS veterinarian 
for identifying bird condition, effort was taken by the researchers to clean the lens and take advantage of 
time periods in which the moisture was slightly less for optimal imaging. When the system was run 
unattended and continuously for eight hours, such efforts were much less due to exhaustion of human labor. 



 

 

It could explain why most of systemically diseased chickens identified by the machine vision system had the 
decision outputs in the range of 0.75 and 0.65, when the decision outputs of many wholesome chickens 
located in the range of 0.65 and 0.55. To improve the environmental condition, a large fan was installed, 
after the first shift ended, near the machine vision system to blow steam away from the system. The machine 
vision system was then run for another eight-hour shift. 

Figure 8 shows the inspection results from the second shift. The machine vision system scanned 61020 
chickens in total and identified 66, or 0.11%, of the chickens as systemically diseased. The inspectors 
observed 64972 carcasses in total, and identified 71, or 0.11%, of them as systemically diseased. These 
results showed that the performance of the machine vision system was similar to that of the inspectors. In 
Figure 8, the decision outputs for systemically diseased chickens were distributed normally in the range 
between 0.65 and 1, and the decision outputs for wholesome chickens were distributed mainly in the range 
between 0 and 0.40. For the chickens whose decision outputs were higher than or equal to 0.65, the number 
of ROI pixels per bird was always less than 2500. For the chickens whose decision outputs were lower than 
0.65, the ROIs varied from 500 to 4000 pixels. The clear separation between the wholesome birds and 
systemically diseased birds in Figure 3, based on the 0.65 threshold value and ROI size, suggests that the 
machine vision system is capable of accurately differentiating wholesome and systemically diseased chicken 
carcasses, and that the 0.65 decision threshold is appropriately set for the differentiation algorithm. 

Figures 7 and 8 show that chicken ROI size varied between 500 and 4000 pixels, and that most ROIs 
occurred within the 1500 to 2800 pixel range. The normal distribution for ROI size indicated that the 
machine vision system was able to scan an adequate area of each carcass surface and quickly acquire data 
sufficient for representing the condition of the carcass. The differentiation results also suggest that the 
multispectral inspection algorithm was designed appropriately for rapidly retrieving line-scan image data 
from the high-speed EMCCD camera, locating the ROI pixels, and calculating the decision output for each 
bird, at an operation speed adequate for the 140 bpm processing line. The mapping functions of the 
differentiation algorithm were simple, which could benefit high speed algorithm execution, and produced 
highly accurate differentiation of carcasses. The results, particularly from the second shift in Figure 8, 
demonstrated that the line-scan machine vision system was successfully developed and could be applied to 
the poultry processing lines to increase efficiency and reduce human error and labor. 

It should note that when the machine vision system is to be used for different populations of chickens, 
possibly varying in season, geography, or growth conditions, the procedure for collecting and analyzing 
sample images to locate the ROI, select key wavebands, and determine algorithm parameters should be 
repeated for each new population. The location of ROI might also vary if chickens are presented for imaging 
on a different processing line configuration, but the design of the machine vision system is flexible enough 
for adaptation to such challenges. 

Conclusion 
A line-scan machine vision system, consisting of an electron-multiplying charge-coupled-device 

(EMCCD) camera, an imaging spectrograph, and two pairs of light-emitting-diode (LED) line lights, was 
developed for online differentiation of systemically diseased chickens from wholesome chickens on a high 
speed commercial processing line. The system could be easily switched to operate in either hyperspectral 
imaging mode or multispectral imaging mode. A method was developed to detect the entry of a chicken 
carcass into, and its exit from, the camera field of view. The region of interest (ROI) for a carcass was 
defined as the area between 40% and 60% of the length from the start point (SP) vertical coordinate to the 
bottommost non-background pixel in each line-scan image between the start line (SL) and the end line (EL). 
The waveband of 580 nm was selected for intensity differentiation and ratio differentiation. The waveband 
of 620 nm was selected for image segmentation and ratio differentiation. A differentiation algorithm using 
two mapping functions was developed to convert the input data for a carcass’s ROI pixels – the relative 
intensity of 580 nm and the ratio of intensities at 580 nm and 620 nm – into an output value indicating the 
carcass’s probability of being systemically diseased in the ROI. Based on 63 sample images of systemically 
diseased chickens, it was determined that when a carcass’s output value was higher than or equal to 0.65, the 
differentiation algorithm could identify the bird as being systemically diseased. The machine vision system 
was developed and evaluated for inspecting chickens on a commercial processing line operating at 140 birds 
per minute. During continuous multispectral inspection for one eight-hour processing shift in a commercial 
processing plant, the machine vision system identified 0.11% (66 of 61020) of chicken carcasses as 
systemically diseased. The rate of 0.11% was the same as that produced by the human inspectors working 
during the same shift. The fast imaging speed and effective image processing and differentiation algorithm 
that produced the high accuracy inspection results demonstrated that the line-scan machine vision system 
was successfully developed and can be effectively used in a commercial chicken processing plant. Use of 
the system could produce significant benefits for increasing efficiency and reducing the effect of human 
error for the poultry processing industry. 
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Table and Figures 
Table 1. The difference between average wholesome ratio and average systemically diseased ratio for 

each waveband pair selected for ratio differentiation 
Waveband pair Difference 
435 nm / 455 nm 0.003461 
495 nm / 534 nm 0.038602 
580 nm / 620 nm 0.115535 
 
Figure 1. The line-scan machine vision system in (A) overhead view, (B) side view, and (C) front view 



 

 

 Figure 2. The spectra for mercury pencil light, neon pencil light, and light-emitting-diode (LED) 
light

 
Figure 3. The location for the region of interest (ROI) 

 



 

 

Figure 4. For each of five different ROIs, the maximum and minimum values that occurred among the 
relative intensity difference values (between average wholesome and average systemically diseased ROI 
pixels) calculated for 55 wavebands. 

 
Figure 5. The average ROI pixel spectra for wholesome chickens and the average ROI pixel spectral for 

systemically diseased chickens, used to select key wavebands for ratio-based differentiation. 
 

 



 

 

Figure 6. The mean and standard deviation values for the relative intensity, and for the two-waveband 
ratio value for waveband pair 580 nm and 620 nm, of wholesome and systemically diseased ROI pixels. 

 
Figure 7. The differentiation results of the machine vision inspection system for continuous multispectral 

inspection during the first 8-hour processing shift 

 



 

 

Figure 8. The differentiation results of the machine vision system for continuous multispectral inspection 
during the second 8-hour processing shift 

 


